Protein Design with Agent Rosetta: A Case Study for Specialized Scientific Agents
Abstract
Large language models (LLMs) are increasingly capable of emulating reasoning and using tools, creating opportunities for autonomous agents that execute complex scientific tasks. Protein design provides a natural case study: existing deep learning models achieve strong results, but they are typically restricted to canonical amino acids and narrow objectives, leaving space for a generalist tool for broad design pipelines. We introduce Agent Rosetta, an LLM agent built on top of the Rosetta suite---the leading physics-based software for heteropolymer design, capable of modeling non-canonical building blocks and geometries. Agent Rosetta is a single-agent, multi-turn framework that iteratively refines heteropolymers to achieve the goals of a user-defined task brief, combining the biophysical knowledge of modern LLMs with the accuracy of Rosetta's physics-based methods. In evaluations, Agent Rosetta achieves performance comparable to specialized deep learning models, especially when combined with inference-time techniques such as best-of-n sampling. Interestingly, we find that prompt engineering alone is insufficient for reliably producing RosettaScripts actions. This underscores the need for building a comprehensive environment that, for example, simplifies the most challenging aspects of RosettaScripts syntax. These results demonstrate that combining frontier LLMs with established domain-specific scientific tools can yield flexible agentic frameworks that not only lower barriers to use but also achieve performance competitive with specialized deep learning models.