Keynote 2: Testing LLM cooperation in Multi-Agent Simulation by Dr. Zhijing Jin
Abstract
While progress has been made in evaluating single-agent LLMs for persona modeling, the behavior of these models within multi-agent groups remains underexplored. This presentation outlines a research series dedicated to closing this gap by testing LLM cooperation through autonomous social simulations. Specifically, we ask: what happens when personas are tasked to interact and cooperate? To answer this, we introduce a suite of simulation environments (GovSim, MoralSim, and SanctSim) designed to stress-test persona interaction. These environments simulate high-stakes scenarios, such as the tragedy of the commons and ethical trade-offs, allowing us to investigate whether simulated societies can autonomously negotiate social order and how personas with differing ethical constraints navigate social dilemmas. Our findings highlight implications for persona modeling. We show that agents exhibit a functional "theory of mind," capable of inferring the identities of their interlocutors and strategically adapting their behavior, sometimes exploiting specific model vulnerabilities. Furthermore, we discuss a counterintuitive phenomenon where advanced reasoning capabilities lead to exploitative behaviors that humans typically avoid, highlighting a significant misalignment between agent optimization and human social norms.