Skip to yearly menu bar Skip to main content


Mexico City Oral Session

Oral 1B Generation/Simulation 1

Don Alberto 2

Moderators: David Ha · Teemu Roos

Wed 3 Dec 10 a.m. PST — 11 a.m. PST
Abstract:
Chat is not available.

Wed 3 Dec. 10:00 - 10:20 PST

Representation Entanglement for Generation: Training Diffusion Transformers Is Much Easier Than You Think

Ge Wu · Shen Zhang · Ruijing Shi · Shanghua Gao · Zhenyuan Chen · Lei Wang · Zhaowei Chen · Hongcheng Gao · Yao Tang · jian Yang · Ming-Ming Cheng · Xiang Li

REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called \textit{\textbf{R}epresentation \textbf{E}ntanglement for \textbf{G}eneration} (\textbf{REG}), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.

Wed 3 Dec. 10:20 - 10:40 PST

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity

Quentin Bertrand · Anne Gagneux · Mathurin Massias · Rémi Emonet

Modern deep generative models can now produce high-quality synthetic samples that are often indistinguishable from real training data. A growing body of research aims to understand why recent methods, such as diffusion and flow matching techniques, generalize so effectively. Among the proposed explanations are the inductive biases of deep learning architectures and the stochastic nature of the conditional flow matching loss. In this work, we rule out the noisy nature of the loss as a key factor driving generalization in flow matching. First, we empirically show that in high-dimensional settings, the stochastic and closed-form versions of the flow matching loss yield nearly equivalent losses. Then, using state-of-the-art flow matching models on standard image datasets, we demonstrate that both variants achieve comparable statistical performance, with the surprising observation that using the closed-form can even improve performance.

Wed 3 Dec. 10:40 - 11:00 PST

Why Diffusion Models Don’t Memorize: The Role of Implicit Dynamical Regularization in Training

Tony Bonnaire · Raphaël Urfin · Giulio Biroli · Marc Mezard

Diffusion models have achieved remarkable success across a wide range of generative tasks. A key challenge is understanding the mechanisms that prevent their memorization of training data and allow generalization. In this work, we investigate the role of the training dynamics in the transition from generalization to memorization. Through extensive experiments and theoretical analysis, we identify two distinct timescales: an early time $\tau_\mathrm{gen}$ at which models begin to generate high-quality samples, and a later time $\tau_\mathrm{mem}$ beyond which memorization emerges. Crucially, we find that $\tau_\mathrm{mem}$ increases linearly with the training set size $n$, while $\tau_\mathrm{gen}$ remains constant. This creates a growing window of training times with $n$ where models generalize effectively, despite showing strong memorization if training continues beyond it. It is only when $n$ becomes larger than a model-dependent threshold that overfitting disappears at infinite training times. These findings reveal a form of implicit dynamical regularization in the training dynamics, which allow to avoid memorization even in highly overparameterized settings. Our results are supported by numerical experiments with standard U-Net architectures on realistic and synthetic datasets, and by a theoretical analysis using a tractable random features model studied in the high-dimensional limit.