Compression Meets Sampling: On Energy-Efficient Random Variate Generation
Abstract
Generating (pseudo-)random variates lies at the core of probabilistic machine learning and prediction algorithms and yet remains a major bottleneck due to its high computational and energy cost. In this paper, we introduce a general and scalable sampling strategy that enables fast and energy-efficient random variate generation from arbitrary distributions. Our approach is based on efficient lookup tables combined with a fast index sampling scheme. Using only a handful of fast and energy-efficient compute operations on simple array structures, we achieve superior speed, energy efficiency, and precision at near-optimal entropy cost compared to state-of-the-art techniques. Our method can be easily integrated into existing machine learning pipelines, outperforming commonly used samplers.