g-DPO: Scalable Preference Optimization for Protein Language Models
Abstract
Direct Preference Optimization (DPO) is an effective approach for aligning protein language models with experimental design goals. However, DPO faces a scalability bottleneck: the number of possible training pairs grows quadratically with the number of labeled sequences, leading to prohibitive training times even for modestly sized datasets. We introduce g-DPO, a framework that (i) uses sequence space clustering to prune redundant pairs while preserving training signal, and (ii) amortizes likelihood computations with group-based approximations. Across three protein engineering tasks, g-DPO maintains in-silico and in-vitro performance that is statistically indistinguishable from standard DPO, while converging 1.8–3.7x faster, with larger gains expected as dataset size increases.