Poster
Matrix factorization with binary components
Martin Slawski · Matthias Hein · Pavlo Lutsik
Harrah's Special Events Center, 2nd Floor
[
Abstract
]
Abstract:
Motivated by an application in computational biology, we consider constrained low-rank matrix factorization problems with {0,1}{0,1}-constraints on one of the factors. In addition to the the non-convexity shared with more general matrix factorization schemes, our problem is further complicated by a combinatorial constraint set of size 2m⋅r2m⋅r, where mm is the dimension of the data points and rr the rank of the factorization. Despite apparent intractability, we provide −−in the line of recent work on non-negative matrix factorization by Arora et al.~(2012)−− an algorithm that provably recovers the underlying factorization in the exact case with operations of the order O(mr2r+mnr)O(mr2r+mnr) in the worst case. To obtain that result, we invoke theory centered around a fundamental result in combinatorics, the Littlewood-Offord lemma.
Live content is unavailable. Log in and register to view live content