Weijie Su. Private false discovery rate control and robustness of the Benjamini-Hochberg procedure
in
Workshop: Adaptive Data Analysis
Abstract
We provide the first differentially private algorithms for controlling the false discovery rate (FDR) in multiple hypothesis testing. Our general approach is to adapt a well-known variant of the Benjamini-Hochberg procedure (BHq), making each step differentially private. This destroys the classical proof of FDR control. To prove FDR control of our method, we develop a new proof of the original (non-private) BHq algorithm and its robust variants -- a proof requiring only the assumption that the true null test statistics are independent, allowing for arbitrary correlations between the true nulls and false nulls. This assumption is fairly weak compared to those previously shown in the vast literature on this topic, and explains in part the empirical robustness of BHq.