[ Area 1 + 2 ]

We introduce the value iteration network (VIN): a fully differentiable neural network with a `planning module' embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies for reinforcement learning. Key to our approach is a novel differentiable approximation of the value-iteration algorithm, which can be represented as a convolutional neural network, and trained end-to-end using standard backpropagation. We evaluate VIN based policies on discrete and continuous path-planning domains, and on a natural-language based search task. We show that by learning an explicit planning computation, VIN policies generalize better to new, unseen domains.

[ Area 1 + 2 ]

We consider tractable representations of probability distributions and the polytime operations they support. In particular, we consider a recently proposed arithmetic circuit representation, the Probabilistic Sentential Decision Diagram (PSDD). We show that PSDD supports a polytime multiplication operator, while they do not support a polytime operator for summing-out variables. A polytime multiplication operator make PSDDs suitable for a broader class of applications compared to arithmetic circuits, which do not in general support multiplication. As one example, we show that PSDD multiplication leads to a very simple but effective compilation algorithm for probabilistic graphical models: represent each model factor as a PSDD, and then multiply them.

[ Area 3 ]

In this work we develop a theory of hierarchical clustering for graphs. Our modelling assumption is that graphs are sampled from a graphon, which is a powerful and general model for generating graphs and analyzing large networks. Graphons are a far richer class of graph models than stochastic blockmodels, the primary setting for recent progress in the statistical theory of graph clustering. We define what it means for an algorithm to produce the ``correct" clustering, give sufficient conditions in which a method is statistically consistent, and provide an explicit algorithm satisfying these properties.

[ Area 3 ]

We study the cost function for hierarchical clusterings introduced by [Dasgupta, 2015] where hierarchies are treated as first-class objects rather than deriving their cost from projections into flat clusters. It was also shown in [Dasgupta, 2015] that a top-down algorithm returns a hierarchical clustering of cost at most (O\left(\alpha*n \log n\right)) times the cost of the optimal hierarchical clustering, where (\alpha*n) is the approximation ratio of the Sparsest Cut subroutine used. Thus using the best known approximation algorithm for Sparsest Cut due to Arora-Rao-Vazirani, the top down algorithm returns a hierarchical clustering of cost at most (O\left(\log^{3/2} n\right)) times the cost of the optimal solution. We improve this by giving an (O(\log{n}))-approximation algorithm for this problem. Our main technical ingredients are a combinatorial characterization of ultrametrics induced by this cost function, deriving an Integer Linear Programming (ILP) formulation for this family of ultrametrics, and showing how to iteratively round an LP relaxation of this formulation by using the idea of \emph{sphere growing} which has been extensively used in the context of graph partitioning. We also prove that our algorithm returns an (O(\log{n}))-approximate hierarchical clustering for a generalization of this cost function also studied in [Dasgupta, 2015]. Experiments show …

[ Area 1 + 2 ]

Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g.\ using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator. Recent work invokes the sparsity assumptions to effectively remove the bias from a sparse estimator such as the lasso. These distributions can be used to give confidence intervals on edges in GGMs, and by extension their differences. However, in the case of comparing GGMs, these estimators do not make use of any assumed joint structure among the GGMs. Inspired by priors from brain functional connectivity we derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. This leads us to introduce the debiased multi-task fused lasso, whose distribution can be characterized in …

[ Area 3 ]

[ Area 1 + 2 ]

We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance based on the total energy-consumption signal of a household. The current state of the art models the problem as inference in factorial HMMs, and finds an approximate solution to the resulting quadratic integer program via quadratic programming. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations with randomized rounding, as well as with a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results demonstrate the superiority of our methods both in synthetic and real-world datasets.

[ Area 1 + 2 ]

We present a scalable and robust Bayesian method for demand forecasting in the context of a large e-commerce platform, paying special attention to intermittent and bursty target statistics. Inference is approximated by the Newton-Raphson algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on several orders of magnitude larger problems than previous related work. In a study on large real-world sales datasets, our method outperforms competing approaches on fast and medium moving items.

[ Area 3 ]

Nonlinear independent component analysis (ICA) provides an appealing framework for unsupervised feature learning, but the models proposed so far are not identifiable. Here, we first propose a new intuitive principle of unsupervised deep learning from time series which uses the nonstationary structure of the data. Our learning principle, time-contrastive learning (TCL), finds a representation which allows optimal discrimination of time segments (windows). Surprisingly, we show how TCL can be related to a nonlinear ICA model, when ICA is redefined to include temporal nonstationarities. In particular, we show that TCL combined with linear ICA estimates the nonlinear ICA model up to point-wise transformations of the sources, and this solution is unique --- thus providing the first identifiability result for nonlinear ICA which is rigorous, constructive, as well as very general.

[ Area 3 ]

Seeding - the task of finding initial cluster centers - is critical in obtaining high-quality clusterings for k-Means. However, k-means++ seeding, the state of the art algorithm, does not scale well to massive datasets as it is inherently sequential and requires k full passes through the data. It was recently shown that Markov chain Monte Carlo sampling can be used to efficiently approximate the seeding step of k-means++. However, this result requires assumptions on the data generating distribution. We propose a simple yet fast seeding algorithm that produces *provably* good clusterings even *without assumptions* on the data. Our analysis shows that the algorithm allows for a favourable trade-off between solution quality and computational cost, speeding up k-means++ seeding by up to several orders of magnitude. We validate our theoretical results in extensive experiments on a variety of real-world data sets.

[ Area 1 + 2 ]

Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus (LC) approach which allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we, first, propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular …

[ Area 3 ]

This work continues the study of the relationship between sample compression schemes and statistical learning, which has been mostly investigated within the framework of binary classification. We first extend the investigation to multiclass categorization: we prove that in this case learnability is equivalent to compression of logarithmic sample size and that the uniform convergence property implies compression of constant size. We use the compressibility-learnability equivalence to show that (i) for multiclass categorization, PAC and agnostic PAC learnability are equivalent, and (ii) to derive a compactness theorem for learnability. We then consider supervised learning under general loss functions: we show that in this case, in order to maintain the compressibility-learnability equivalence, it is necessary to consider an approximate variant of compression. We use it to show that PAC and agnostic PAC are not equivalent, even when the loss function has only three values.

[ Area 1 + 2 ]

Predicting the behavior of human participants in strategic settings is an important problem in many domains. Most existing work either assumes that participants are perfectly rational, or attempts to directly model each participant's cognitive processes based on insights from cognitive psychology and experimental economics. In this work, we present an alternative, a deep learning approach that automatically performs cognitive modeling without relying on such expert knowledge. We introduce a novel architecture that allows a single network to generalize across different input and output dimensions by using matrix units rather than scalar units, and show that its performance significantly outperforms that of the previous state of the art, which relies on expert-constructed features.

[ Area 3 ]

In online convex optimization it is well known that certain subclasses of objective functions are much easier than arbitrary convex functions. We are interested in designing adaptive methods that can automatically get fast rates in as many such subclasses as possible, without any manual tuning. Previous adaptive methods are able to interpolate between strongly convex and general convex functions. We present a new method, MetaGrad, that adapts to a much broader class of functions, including exp-concave and strongly convex functions, but also various types of stochastic and non-stochastic functions without any curvature. For instance, MetaGrad can achieve logarithmic regret on the unregularized hinge loss, even though it has no curvature, if the data come from a favourable probability distribution. MetaGrad's main feature is that it simultaneously considers multiple learning rates. Unlike all previous methods with provable regret guarantees, however, its learning rates are not monotonically decreasing over time and are not tuned based on a theoretically derived bound on the regret. Instead, they are weighted directly proportional to their empirical performance on the data using a tilted exponential weights master algorithm.

[ Area 1 + 2 ]

Until recently, research on artificial neural networks was largely restricted to systems with only two types of variable: Neural activities that represent the current or recent input and weights that learn to capture regularities among inputs, outputs and payoffs. There is no good reason for this restriction. Synapses have dynamics at many different time-scales and this suggests that artificial neural networks might benefit from variables that change slower than activities but much faster than the standard weights. These ``fast weights'' can be used to store temporary memories of the recent past and they provide a neurally plausible way of implementing the type of attention to the past that has recently proven helpful in sequence-to-sequence models. By using fast weights we can avoid the need to store copies of neural activity patterns.

[ Area 3 ]

We study the sampling-based planning problem in Markov decision processes (MDPs) that we can access only through a generative model, usually referred to as Monte-Carlo planning. Our objective is to return a good estimate of the optimal value function at any state while minimizing the number of calls to the generative model, i.e. the sample complexity. We propose a new algorithm, TrailBlazer, able to handle MDPs with a finite or an infinite number of transitions from state-action to next states. TrailBlazer is an adaptive algorithm that exploits possible structures of the MDP by exploring only a subset of states reachable by following near-optimal policies. We provide bounds on its sample complexity that depend on a measure of the quantity of near-optimal states. The algorithm behavior can be considered as an extension of Monte-Carlo sampling (for estimating an expectation) to problems that alternate maximization (over actions) and expectation (over next states). Finally, another appealing feature of TrailBlazer is that it is simple to implement and computationally efficient.

[ Area 1 + 2 ]

How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model’s posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over the uncertainty in a latent path, like a state space model, we improve the state of the art results on the Blizzard and TIMIT speech modeling data sets by a large margin, while achieving comparable performances to competing methods on polyphonic music modeling.

[ Area 1 + 2 ]

Recurrent Neural Networks (RNNs) have become the state-of-the-art choice for extracting patterns from temporal sequences. Current RNN models are ill suited to process irregularly sampled data triggered by events generated in continuous time by sensors or other neurons. Such data can occur, for example, when the input comes from novel event-driven artificial sensors which generate sparse, asynchronous streams of events or from multiple conventional sensors with different update intervals. In this work, we introduce the Phased LSTM model, which extends the LSTM unit by adding a new time gate. This gate is controlled by a parametrized oscillation with a frequency range which require updates of the memory cell only during a small percentage of the cycle. Even with the sparse updates imposed by the oscillation, the Phased LSTM network achieves faster convergence than regular LSTMs on tasks which require learning of long sequences. The model naturally integrates inputs from sensors of arbitrary sampling rates, thereby opening new areas of investigation for processing asynchronous sensory events that carry timing information. It also greatly improves the performance of LSTMs in standard RNN applications, and does so with an order-of-magnitude fewer computes.

[ Area 3 ]

Expectation Maximization (EM) is among the most popular algorithms for estimating parameters of statistical models. However, EM, which is an iterative algorithm based on the maximum likelihood principle, is generally only guaranteed to find stationary points of the likelihood objective, and these points may be far from any maximizer. This article addresses this disconnect between the statistical principles behind EM and its algorithmic properties. Specifically, it provides a global analysis of EM for specific models in which the observations comprise an i.i.d. sample from a mixture of two Gaussians. This is achieved by (i) studying the sequence of parameters from idealized execution of EM in the infinite sample limit, and fully characterizing the limit points of the sequence in terms of the initial parameters; and then (ii) based on this convergence analysis, establishing statistical consistency (or lack thereof) for the actual sequence of parameters produced by EM.

[ Area 1 + 2 ]

Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why random or arbitrary initialization suffices in practice. We prove that the commonly used non-convex objective function for matrix completion has no spurious local minima --- all local minima must also be global. Therefore, many popular optimization algorithms such as (stochastic) gradient descent can provably solve matrix completion with \textit{arbitrary} initialization in polynomial time.

[ Area 1 + 2 ]

This paper deals with price optimization, which is to find the best pricing strategy that maximizes revenue or profit, on the basis of demand forecasting models. Though recent advances in regression technologies have made it possible to reveal price-demand relationship of a number of multiple products, most existing price optimization methods, such as mixed integer programming formulation, cannot handle tens or hundreds of products because of their high computational costs. To cope with this problem, this paper proposes a novel approach based on network flow algorithms. We reveal a connection between supermodularity of the revenue and cross elasticity of demand. On the basis of this connection, we propose an efficient algorithm that employs network flow algorithms. The proposed algorithm can handle hundreds or thousands of products, and returns an exact optimal solution under an assumption regarding cross elasticity of demand. Even in case in which the assumption does not hold, the proposed algorithm can efficiently find approximate solutions as good as can other state-of-the-art methods, as empirical results show.

[ Area 3 ]

[ Area 1 + 2 ]

We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods, which have tackled this problem in a deterministic or non-parametric way, we propose a novel approach which models future frames in a probabilistic manner. Our proposed method is therefore able to synthesize multiple possible next frames using the same model. Solving this challenging problem involves low- and high-level image and motion understanding for successful image synthesis. Here, we propose a novel network structure, namely a Cross Convolutional Network, that encodes images as feature maps and motion information as convolutional kernels to aid in synthesizing future frames. In experiments, our model performs well on both synthetic data, such as 2D shapes and animated game sprites, as well as on real-wold video data. We show that our model can also be applied to tasks such as visual analogy-making, and present analysis of the learned network representations.

[ Area 3 ]

[ Area 3 ]

This paper presents a dynamical system based on the Poisson-Gamma construction for sequentially observed multivariate count data. Inherent to the model is a novel Bayesian nonparametric prior that ties and shrinks parameters in a powerful way. We develop theory about the model's infinite limit and its steady-state. The model's inductive bias is demonstrated on a variety of real-world datasets where it is shown to learn interpretable structure and have superior predictive performance.

[ Area 1 + 2 ]

Accurately measuring the similarity between text documents lies at the core of many real world applications of machine learning. These include web-search ranking, document recommendation, multi-lingual document matching, and article categorization. Recently, a new document metric, the word mover's distance (WMD), has been proposed with unprecedented results on kNN-based document classification. The WMD elevates high quality word embeddings to document metrics by formulating the distance between two documents as an optimal transport problem between the embedded words. However, the document distances are entirely unsupervised and lack a mechanism to incorporate supervision when available. In this paper we propose an efficient technique to learn a supervised metric, which we call the Supervised WMD (S-WMD) metric. Our algorithm learns document distances that measure the underlying semantic differences between documents by leveraging semantic differences between individual words discovered during supervised training. This is achieved with an linear transformation of the underlying word embedding space and tailored word-specific weights, learned to minimize the stochastic leave-one-out nearest neighbor classification error on a per-document level. We evaluate our metric on eight real-world text classification tasks on which S-WMD consistently outperforms almost all of our 26 competitive baselines.

[ Area 3 ]

Many real world graphs, such as the graphs of molecules, exhibit structure at multiple different scales, but most existing kernels between graphs are either purely local or purely global in character. In contrast, by building a hierarchy of nested subgraphs, the Multiscale Laplacian Graph kernels (MLG kernels) that we define in this paper can account for structure at a range of different scales. At the heart of the MLG construction is another new graph kernel, called the Feature Space Laplacian Graph kernel (FLG kernel), which has the property that it can lift a base kernel defined on the vertices of two graphs to a kernel between the graphs. The MLG kernel applies such FLG kernels to subgraphs recursively. To make the MLG kernel computationally feasible, we also introduce a randomized projection procedure, similar to the Nystro ̈m method, but for RKHS operators.

[ Area 1 + 2 ]

Many online communities present user-contributed responses, such as reviews of products and answers to questions. User-provided helpfulness votes can highlight the most useful responses, but voting is a social process that can gain momentum based on the popularity of responses and the polarity of existing votes. We propose the Chinese Voting Process (CVP) which models the evolution of helpfulness votes as a self-reinforcing process dependent on position and presentation biases. We evaluate this model on Amazon product reviews and more than 80 StackExchange forums, measuring the intrinsic quality of individual responses and behavioral coefficients of different communities.

[ Area 3 ]

Area under ROC (AUC) is a metric which is widely used for measuring the classification performance for imbalanced data. It is of theoretical and practical interest to develop online learning algorithms that maximizes AUC for large-scale data. A specific challenge in developing online AUC maximization algorithm is that the learning objective function is usually defined over a pair of training examples of opposite classes, and existing methods achieves on-line processing with higher space and time complexity. In this work, we propose a new stochastic online algorithm for AUC maximization. In particular, we show that AUC optimization can be equivalently formulated as a convex-concave saddle point problem. From this saddle representation, a stochastic online algorithm (SOLAM) is proposed which has time and space complexity of one datum. We establish theoretical convergence of SOLAM with high probability and demonstrate its effectiveness and efficiency on standard benchmark datasets.

[ Area 1 + 2 ]

Proteins are the "building blocks of life", the most abundant organic molecules, and the central focus of most areas of biomedicine. Protein structure is strongly related to protein function, thus structure prediction is a crucial task on the way to solve many biological questions. A contact map is a compact representation of the three-dimensional structure of a protein via the pairwise contacts between the amino acid constituting the protein. We use a convolutional network to calculate protein contact maps from inferred statistical coupling between positions in the protein sequence. The input to the network has an image-like structure amenable to convolutions, but every "pixel" instead of color channels contains a bipartite undirected edge-weighted graph. We propose several methods for treating such "graph-valued images" in a convolutional network. The proposed method outperforms state-of-the-art methods by a large margin. It also allows for a great flexibility with regard to the input data, which makes it useful for studying a wide range of problems.

[ Area 3 ]

Stochastic gradient methods for machine learning and optimization problems are usually analyzed assuming data points are sampled *with* replacement. In contrast, sampling *without* replacement is far less understood, yet in practice it is very common, often easier to implement, and usually performs better. In this paper, we provide competitive convergence guarantees for without-replacement sampling under several scenarios, focusing on the natural regime of few passes over the data. Moreover, we describe a useful application of these results in the context of distributed optimization with randomly-partitioned data, yielding a nearly-optimal algorithm for regularized least squares (in terms of both communication complexity and runtime complexity) under broad parameter regimes. Our proof techniques combine ideas from stochastic optimization, adversarial online learning and transductive learning theory, and can potentially be applied to other stochastic optimization and learning problems.

[ Area 1 + 2 ]

In this paper, we prove a conjecture published in 1989 and also partially address an open problem announced at the Conference on Learning Theory (COLT) 2015. For an expected loss function of a deep nonlinear neural network, we prove the following statements under the independence assumption adopted from recent work: 1) the function is non-convex and non-concave, 2) every local minimum is a global minimum, 3) every critical point that is not a global minimum is a saddle point, and 4) the property of saddle points differs for shallow networks (with three layers) and deeper networks (with more than three layers). Moreover, we prove that the same four statements hold for deep linear neural networks with any depth, any widths and no unrealistic assumptions. As a result, we present an instance, for which we can answer to the following question: how difficult to directly train a deep model in theory? It is more difficult than the classical machine learning models (because of the non-convexity), but not too difficult (because of the nonexistence of poor local minima and the property of the saddle points). We note that even though we have advanced the theoretical foundations of deep learning, there is still …

[ Area 3 ]

We describe a convergence acceleration technique for generic optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple and small linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems.

[ Area 1 + 2 ]

[ Area 1 + 2 ]

We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 50K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods. We also demonstrate that active data collection using the learned model further improves performance.

[ Area 3 ]

Recently, several works have shown that natural modifications of the classical conditional gradient method (aka Frank-Wolfe algorithm) for constrained convex optimization, provably converge with a linear rate when the feasible set is a polytope, and the objective is smooth and strongly-convex. However, all of these results suffer from two significant shortcomings: i) large memory requirement due to the need to store an explicit convex decomposition of the current iterate, and as a consequence, large running-time overhead per iteration ii) the worst case convergence rate depends unfavorably on the dimension In this work we present a new conditional gradient variant and a corresponding analysis that improves on both of the above shortcomings. In particular, both memory and computation overheads are only linear in the dimension, and in addition, in case the optimal solution is sparse, the new convergence rate replaces a factor which is at least linear in the dimension in previous works, with a linear dependence on the number of non-zeros in the optimal solution At the heart of our method, and corresponding analysis, is a novel way to compute decomposition-invariant away-steps. While our theoretical guarantees do not apply to any polytope, they apply to several important structured polytopes that …

[ Area 3 ]

[ Area 1 + 2 ]

Generative Adversarial Networks (GANs) have recently demonstrated the capability to synthesize compelling real-world images, such as room interiors, album covers, manga, faces, birds, and flowers. While existing models can synthesize images based on global constraints such as a class label or caption, they do not provide control over pose or object location. We propose a new model, the Generative Adversarial What-Where Network (GAWWN), that synthesizes images given instructions describing what content to draw in which location. We show high-quality 128 × 128 image synthesis on the Caltech-UCSD Birds dataset, conditioned on both informal text descriptions and also object location. Our system exposes control over both the bounding box around the bird and its constituent parts. By modeling the conditional distributions over part locations, our system also enables conditioning on arbitrary subsets of parts (e.g. only the beak and tail), yielding an efficient interface for picking part locations.

[ Area 1 + 2 ]

We present weight normalization: a reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction. By reparameterizing the weights in this way we improve the conditioning of the optimization problem and we speed up convergence of stochastic gradient descent. Our reparameterization is inspired by batch normalization but does not introduce any dependencies between the examples in a minibatch. This means that our method can also be applied successfully to recurrent models such as LSTMs and to noise-sensitive applications such as deep reinforcement learning or generative models, for which batch normalization is less well suited. Although our method is much simpler, it still provides much of the speed-up of full batch normalization. In addition, the computational overhead of our method is lower, permitting more optimization steps to be taken in the same amount of time. We demonstrate the usefulness of our method on applications in supervised image recognition, generative modelling, and deep reinforcement learning.

[ Area 3 ]

Bayesian optimization is a prominent method for optimizing expensive to evaluate black-box functions that is prominently applied to tuning the hyperparameters of machine learning algorithms. Despite its successes, the prototypical Bayesian optimization approach - using Gaussian process models - does not scale well to either many hyperparameters or many function evaluations. Attacking this lack of scalability and flexibility is thus one of the key challenges of the field. We present a general approach for using flexible parametric models (neural networks) for Bayesian optimization, staying as close to a truly Bayesian treatment as possible. We obtain scalability through stochastic gradient Hamiltonian Monte Carlo, whose robustness we improve via a scale adaptation. Experiments including multi-task Bayesian optimization with 21 tasks, parallel optimization of deep neural networks and deep reinforcement learning show the power and flexibility of this approach.

[ Area 3 ]

People often learn from others' demonstrations, and classic inverse reinforcement learning (IRL) algorithms have brought us closer to realizing this capacity in machines. In contrast, teaching by demonstration has been less well studied computationally. Here, we develop a novel Bayesian model for teaching by demonstration. Stark differences arise when demonstrators are intentionally teaching a task versus simply performing a task. In two experiments, we show that human participants systematically modify their teaching behavior consistent with the predictions of our model. Further, we show that even standard IRL algorithms benefit when learning from behaviors that are intentionally pedagogical. We conclude by discussing IRL algorithms that can take advantage of intentional pedagogy.

[ Area 1 + 2 ]

Two semimetrics on probability distributions are proposed, given as the sum of differences of expectations of analytic functions evaluated at spatial or frequency locations (i.e, features). The features are chosen so as to maximize the distinguishability of the distributions, by optimizing a lower bound on test power for a statistical test using these features. The result is a parsimonious and interpretable indication of how and where two distributions differ locally. An empirical estimate of the test power criterion converges with increasing sample size, ensuring the quality of the returned features. In real-world benchmarks on high-dimensional text and image data, linear-time tests using the proposed semimetrics achieve comparable performance to the state-of-the-art quadratic-time maximum mean discrepancy test, while returning human-interpretable features that explain the test results.

[ Area 3 ]

In many applications, it is desirable to extract only the relevant aspects of data. A principled way to do this is the information bottleneck (IB) method, where one seeks a code that maximises information about a relevance variable, Y, while constraining the information encoded about the original data, X. Unfortunately however, the IB method is computationally demanding when data are high-dimensional and/or non-gaussian. Here we propose an approximate variational scheme for maximising a lower bound on the IB objective, analogous to variational EM. Using this method, we derive an IB algorithm to recover features that are both relevant and sparse. Finally, we demonstrate how kernelised versions of the algorithm can be used to address a broad range of problems with non-linear relation between X and Y.

[ Area 1 + 2 ]

Example-based explanations are widely used in the effort to improve the interpretability of highly complex distributions. However, prototypes alone are rarely sufficient to represent the gist of the complexity. In order for users to construct better mental models and understand complex data distributions, we also need {\em criticism} to explain what are \textit{not} captured by prototypes. Motivated by the Bayesian model criticism framework, we develop \texttt{MMD-critic} which efficiently learns prototypes and criticism, designed to aid human interpretability. A human subject pilot study shows that the \texttt{MMD-critic} selects prototypes and criticism that are useful to facilitate human understanding and reasoning. We also evaluate the prototypes selected by \texttt{MMD-critic} via a nearest prototype classifier, showing competitive performance compared to baselines.

[ Area 3 ]

A model of associative memory is studied, which stores and reliably retrieves many more patterns than the number of neurons in the network. We propose a simple duality between this dense associative memory and neural networks commonly used in deep learning. On the associative memory side of this duality, a family of models that smoothly interpolates between two limiting cases can be constructed. One limit is referred to as the feature-matching mode of pattern recognition, and the other one as the prototype regime. On the deep learning side of the duality, this family corresponds to feedforward neural networks with one hidden layer and various activation functions, which transmit the activities of the visible neurons to the hidden layer. This family of activation functions includes logistics, rectified linear units, and rectified polynomials of higher degrees. The proposed duality makes it possible to apply energy-based intuition from associative memory to analyze computational properties of neural networks with unusual activation functions - the higher rectified polynomials which until now have not been used in deep learning. The utility of the dense memories is illustrated for two test cases: the logical gate XOR and the recognition of handwritten digits from the MNIST data set.