Skip to yearly menu bar Skip to main content


Poster

Improved Techniques for Training GANs

Tim Salimans · Ian Goodfellow · Wojciech Zaremba · Vicki Cheung · Alec Radford · Peter Chen · Xi Chen

Area 5+6+7+8 #166

Keywords: [ Deep Learning or Neural Networks ] [ Semi-Supervised Learning ]


Abstract:

We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: Our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.

Live content is unavailable. Log in and register to view live content