Skip to yearly menu bar Skip to main content


Eliciting Categorical Data for Optimal Aggregation

Chien-Ju Ho · Rafael Frongillo · Yiling Chen

Area 5+6+7+8 #111

Keywords: [ (Other) Probabilistic Models and Methods ] [ Game Theory and Econometrics ] [ (Application) Web Applications and Internet Data ]


Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.

Live content is unavailable. Log in and register to view live content