Poster
Cooperative Graphical Models
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause
Area 5+6+7+8 #161
Keywords: [ Combinatorial Optimization ] [ Variational Inference ] [ Graphical Models ]
We study a rich family of distributions that capture variable interactions significantly more expressive than those representable with low-treewidth or pairwise graphical models, or log-supermodular models. We call these cooperative graphical models. Yet, this family retains structure, which we carefully exploit for efficient inference techniques. Our algorithms combine the polyhedral structure of submodular functions in new ways with variational inference methods to obtain both lower and upper bounds on the partition function. While our fully convex upper bound is minimized as an SDP or via tree-reweighted belief propagation, our lower bound is tightened via belief propagation or mean-field algorithms. The resulting algorithms are easy to implement and, as our experiments show, effectively obtain good bounds and marginals for synthetic and real-world examples.
Live content is unavailable. Log in and register to view live content