Poster
Variational Inference in Mixed Probabilistic Submodular Models
Josip Djolonga · Sebastian Tschiatschek · Andreas Krause
Keywords: [ Combinatorial Optimization ] [ Variational Inference ]
We consider the problem of variational inference in probabilistic models with both log-submodular and log-supermodular higher-order potentials. These models can represent arbitrary distributions over binary variables, and thus generalize the commonly used pairwise Markov random fields and models with log-supermodular potentials only, for which efficient approximate inference algorithms are known. While inference in the considered models is #P-hard in general, we present efficient approximate algorithms exploiting recent advances in the field of discrete optimization. We demonstrate the effectiveness of our approach in a large set of experiments, where our model allows reasoning about preferences over sets of items with complements and substitutes.