Poster
Pruning Random Forests for Prediction on a Budget
Feng Nan · Joseph Wang · Venkatesh Saligrama
Area 5+6+7+8 #150
Keywords: [ Combinatorial Optimization ] [ (Other) Classification ] [ (Other) Machine Learning Topics ]
We propose to prune a random forest (RF) for resource-constrained prediction. We first construct a RF and then prune it to optimize expected feature cost & accuracy. We pose pruning RFs as a novel 0-1 integer program with linear constraints that encourages feature re-use. We establish total unimodularity of the constraint set to prove that the corresponding LP relaxation solves the original integer program. We then exploit connections to combinatorial optimization and develop an efficient primal-dual algorithm, scalable to large datasets. In contrast to our bottom-up approach, which benefits from good RF initialization, conventional methods are top-down acquiring features based on their utility value and is generally intractable, requiring heuristics. Empirically, our pruning algorithm outperforms existing state-of-the-art resource-constrained algorithms.
Live content is unavailable. Log in and register to view live content