Skip to yearly menu bar Skip to main content


Workshop

Deep Learning for Action and Interaction

Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang

Area 3

Deep learning systems that act in and interact with an environment must reason about how actions will change the world around them. The natural regime for such real-world decision problems involves supervision that is weak, delayed, or entirely absent, and the outputs are typically in the context of sequential decision processes, where each decision affects the next input. This regime poses a challenge for deep learning algorithms, which typically excel with: (1) large amounts of strongly supervised data and (2) a stationary distribution of independently observed inputs. The algorithmic tools for tackling these challenges have traditionally come from reinforcement learning, optimal control, and planning, and indeed the intersection of reinforcement learning and deep learning is currently an exciting and active research area. At the same time, deep learning methods for interactive decision-making domains have also been proposed in computer vision, robotics, and natural language processing, often using different tools and algorithmic formalisms from classical reinforcement learning, such as direct supervised learning, imitation learning, and model-based control. The aim of this workshop will be to bring together researchers across these disparate fields. The workshop program will focus on both the algorithmic and theoretical foundations of decision making and interaction with deep learning, and the practical challenges associated with bringing to bear deep learning methods in interactive settings, such as robotics, autonomous vehicles, and interactive agents.

Live content is unavailable. Log in and register to view live content

Timezone: America/Los_Angeles

Schedule

Log in and register to view live content