Skip to yearly menu bar Skip to main content


Workshop

Reliable Machine Learning in the Wild

Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang

Room 113

When will a system that has performed well in the past continue to do so in the future? How do we design such systems in the presence of novel and potentially adversarial input distributions? What techniques will let us safely build and deploy autonomous systems on a scale where human monitoring becomes difficult or infeasible? Answering these questions is critical to guaranteeing the safety of emerging high stakes applications of AI, such as self-driving cars and automated surgical assistants. This workshop will bring together researchers in areas such as human-robot interaction, security, causal inference, and multi-agent systems in order to strengthen the field of reliability engineering for machine learning systems. We are interested in approaches that have the potential to provide assurances of reliability, especially as systems scale in autonomy and complexity. We will focus on four aspects — robustness (to adversaries, distributional shift, model mis-specification, corrupted data); awareness (of when a change has occurred, when the model might be mis-calibrated, etc.); adaptation (to new situations or objectives); and monitoring (allowing humans to meaningfully track the state of the system). Together, these will aid us in designing and deploying reliable machine learning systems.

Live content is unavailable. Log in and register to view live content

Timezone: America/Los_Angeles

Schedule

Log in and register to view live content