Skip to yearly menu bar Skip to main content


Search All 2017 Events
 

24 Results

<<   <   Page 1 of 2   >   >>
Poster
Mon 18:30 Stochastic Submodular Maximization: The Case of Coverage Functions
Mohammad Karimi · Mario Lucic · Hamed Hassani · Andreas Krause
Poster
Tue 18:30 Regret Analysis for Continuous Dueling Bandit
Wataru Kumagai
Poster
Tue 18:30 Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter
Yi Xu · Qihang Lin · Tianbao Yang
Poster
Tue 18:30 Nonlinear Acceleration of Stochastic Algorithms
Damien Scieur · Francis Bach · Alexandre d'Aspremont
Poster
Wed 18:30 Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder · Yuhuai Wu · David Duvenaud
Poster
Mon 18:30 A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent
Ben London
Poster
Tue 18:30 Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent
Peva Blanchard · El Mahdi El-Mhamdi · Rachid Guerraoui · Julien Stainer
Poster
Mon 18:30 Collapsed variational Bayes for Markov jump processes
Boqian Zhang · Jiangwei Pan · Vinayak Rao
Poster
Mon 18:30 Task-based End-to-end Model Learning in Stochastic Optimization
Priya Donti · J. Zico Kolter · Brandon Amos
Poster
Wed 18:30 TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
Wei Wen · Cong Xu · Feng Yan · Chunpeng Wu · Yandan Wang · Yiran Chen · Hai Li
Poster
Tue 18:30 Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization
Tomoya Murata · Taiji Suzuki
Poster
Mon 18:30 A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks
Qinliang Su · xuejun Liao · Lawrence Carin