Invited Talk
Designing Computer Systems for Software 2.0
Kunle Olukotun
Room 220 CD
The use of machine learning to generate models from data is replacing traditional software development for many applications. This fundamental shift in how we develop software, known as Software 2.0, has provided dramatic improvements in the quality and ease of deployment for these applications. The continued success and expansion of the Software 2.0 approach must be powered by the availability of powerful, efficient and flexible computer systems that are tailored for machine learning applications. This talk will describe a design approach that optimizes computer systems to match the requirements of machine learning applications. The full-stack design approach integrates machine learning algorithms that are optimized for the characteristics of applications and the strengths of modern hardware, domain-specific languages and advanced compilation technology designed for programmability and performance, and hardware architectures that achieve both high flexibility and high energy efficiency.