Skip to yearly menu bar Skip to main content


Poster

Bayesian Semi-supervised Learning with Graph Gaussian Processes

Yin Cheng Ng · Nicolò Colombo · Ricardo Silva

Room 210 #64

Keywords: [ Semi-Supervised Learning ] [ Gaussian Processes ]


Abstract:

We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.

Live content is unavailable. Log in and register to view live content