Skip to yearly menu bar Skip to main content


Poster

Meta-Learning MCMC Proposals

Tongzhou Wang · YI WU · Dave Moore · Stuart Russell

Room 210 #47

Keywords: [ Meta-Learning ] [ Graphical Models ] [ MCMC ]


Abstract:

Effective implementations of sampling-based probabilistic inference often require manually constructed, model-specific proposals. Inspired by recent progresses in meta-learning for training learning agents that can generalize to unseen environments, we propose a meta-learning approach to building effective and generalizable MCMC proposals. We parametrize the proposal as a neural network to provide fast approximations to block Gibbs conditionals. The learned neural proposals generalize to occurrences of common structural motifs across different models, allowing for the construction of a library of learned inference primitives that can accelerate inference on unseen models with no model-specific training required. We explore several applications including open-universe Gaussian mixture models, in which our learned proposals outperform a hand-tuned sampler, and a real-world named entity recognition task, in which our sampler yields higher final F1 scores than classical single-site Gibbs sampling.

Live content is unavailable. Log in and register to view live content