Skip to yearly menu bar Skip to main content


Poster

The Importance of Sampling inMeta-Reinforcement Learning

Bradly Stadie · Ge Yang · Rein Houthooft · Peter Chen · Yan Duan · Yuhuai Wu · Pieter Abbeel · Ilya Sutskever

Room 210 #85

Keywords: [ Representation Learning ] [ Optimization for Deep Networks ] [ Reinforcement Learning ] [ Meta-Learning ]


Abstract: We interpret meta-reinforcement learning as the problem of learning how to quickly find a good sampling distribution in a new environment. This interpretation leads to the development of two new meta-reinforcement learning algorithms: E-MAML and E-$\text{RL}^2$. Results are presented on a new environment we call `Krazy World': a difficult high-dimensional gridworld which is designed to highlight the importance of correctly differentiating through sampling distributions in meta-reinforcement learning. Further results are presented on a set of maze environments. We show E-MAML and E-$\text{RL}^2$ deliver better performance than baseline algorithms on both tasks.

Live content is unavailable. Log in and register to view live content