Poster
|
Thu 7:45
|
Learning Deep Disentangled Embeddings With the F-Statistic Loss
Karl Ridgeway · Michael Mozer
|
|
Workshop
|
Sat 12:10
|
TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau∗, Yet
Andrey Ustyuzhanin · jean-roch vlimant
|
|
Poster
|
Thu 7:45
|
Toddler-Inspired Visual Object Learning
Sven Bambach · David Crandall · Linda Smith · Chen Yu
|
|
Spotlight
|
Wed 6:55
|
End-to-End Differentiable Physics for Learning and Control
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter
|
|
Poster
|
Wed 7:45
|
Critical initialisation for deep signal propagation in noisy rectifier neural networks
Arnu Pretorius · Elan van Biljon · Steve Kroon · Herman Kamper
|
|
Tutorial
|
Mon 11:30
|
Statistical Learning Theory: a Hitchhiker's Guide
John Shawe-Taylor · Omar Rivasplata
|
|
Workshop
|
Sat 12:30
|
DeepPavlov: An Open Source Library for Conversational AI
Yury Kuratov
|
|
Spotlight
|
Wed 7:20
|
Minimax Statistical Learning with Wasserstein distances
Jaeho Lee · Maxim Raginsky
|
|
Workshop
|
Fri 5:00
|
Modeling the Physical World: Learning, Perception, and Control
Jiajun Wu · Kelsey Allen · Kevin Smith · Jessica Hamrick · Emmanuel Dupoux · Marc Toussaint · Josh Tenenbaum
|
|
Poster
|
Wed 7:45
|
Minimax Statistical Learning with Wasserstein distances
Jaeho Lee · Maxim Raginsky
|
|
Poster
|
Wed 7:45
|
Plug-in Estimation in High-Dimensional Linear Inverse Problems: A Rigorous Analysis
Alyson Fletcher · Parthe Pandit · Sundeep Rangan · Subrata Sarkar · Philip Schniter
|
|
Poster
|
Wed 7:45
|
Computationally and statistically efficient learning of causal Bayes nets using path queries
Kevin Bello · Jean Honorio
|
|