Skip to yearly menu bar Skip to main content


Session

Tue Track 2 -- Session 2

Abstract:
Chat is not available.

Tue 4 Dec. 12:30 - 12:35 PST

Spotlight
Evolved Policy Gradients

Rein Houthooft · Yuhua Chen · Phillip Isola · Bradly Stadie · Filip Wolski · OpenAI Jonathan Ho · Pieter Abbeel

We propose a metalearning approach for learning gradient-based reinforcement learning (RL) algorithms. The idea is to evolve a differentiable loss function, such that an agent, which optimizes its policy to minimize this loss, will achieve high rewards. The loss is parametrized via temporal convolutions over the agent's experience. Because this loss is highly flexible in its ability to take into account the agent's history, it enables fast task learning. Empirical results show that our evolved policy gradient algorithm (EPG) achieves faster learning on several randomized environments compared to an off-the-shelf policy gradient method. We also demonstrate that EPG's learned loss can generalize to out-of-distribution test time tasks, and exhibits qualitatively different behavior from other popular metalearning algorithms.

Tue 4 Dec. 12:35 - 12:40 PST

Spotlight
Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning

Tyler Scott · Karl Ridgeway · Michael Mozer

The focus in machine learning has branched beyond training classifiers on a single task to investigating how previously acquired knowledge in a source domain can be leveraged to facilitate learning in a related target domain, known as inductive transfer learning. Three active lines of research have independently explored transfer learning using neural networks. In weight transfer, a model trained on the source domain is used as an initialization point for a network to be trained on the target domain. In deep metric learning, the source domain is used to construct an embedding that captures class structure in both the source and target domains. In few-shot learning, the focus is on generalizing well in the target domain based on a limited number of labeled examples. We compare state-of-the-art methods from these three paradigms and also explore hybrid adapted-embedding methods that use limited target-domain data to fine tune embeddings constructed from source-domain data. We conduct a systematic comparison of methods in a variety of domains, varying the number of labeled instances available in the target domain (k), as well as the number of target-domain classes. We reach three principal conclusions: (1) Deep embeddings are far superior, compared to weight transfer, as a starting point for inter-domain transfer or model re-use (2) Our hybrid methods robustly outperform every few-shot learning and every deep metric learning method previously proposed, with a mean error reduction of 34% over state-of-the-art. (3) Among loss functions for discovering embeddings, the histogram loss (Ustinova & Lempitsky, 2016) is most robust. We hope our results will motivate a unification of research in weight transfer, deep metric learning, and few-shot learning.

Tue 4 Dec. 12:40 - 12:45 PST

Spotlight
Bayesian Model-Agnostic Meta-Learning

Jaesik Yoon · Taesup Kim · Ousmane Dia · Sungwoong Kim · Yoshua Bengio · Sungjin Ahn

Due to the inherent model uncertainty, learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines efficient gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. Unlike previous methods, during fast adaptation, the method is capable of learning complex uncertainty structure beyond a simple Gaussian approximation, and during meta-update, a novel Bayesian mechanism prevents meta-level overfitting. Remaining a gradient-based method, it is also the first Bayesian model-agnostic meta-learning method applicable to various tasks including reinforcement learning. Experiment results show the accuracy and robustness of the proposed method in sinusoidal regression, image classification, active learning, and reinforcement learning.

Tue 4 Dec. 12:45 - 12:50 PST

Spotlight
Probabilistic Neural Programmed Networks for Scene Generation

Zhiwei Deng · Jiacheng Chen · YIFANG FU · Greg Mori

In this paper we address the text to scene image generation problem. Generative models that capture the variability in complicated scenes containing rich semantics is a grand goal of image generation. Complicated scene images contain rich visual elements, compositional visual concepts, and complicated relations between objects. Generative models, as an analysis-by-synthesis process, should encompass the following three core components: 1) the generation process that composes the scene; 2) what are the primitive visual elements and how are they composed; 3) the rendering of abstract concepts into their pixel-level realizations. We propose PNP-Net, a variational auto-encoder framework that addresses these three challenges: it flexibly composes images with a dynamic network structure, learns a set of distribution transformers that can compose distributions based on semantics, and decodes samples from these distributions into realistic images.

Tue 4 Dec. 12:50 - 13:05 PST

Oral
Neural Ordinary Differential Equations

Tian Qi Chen · Yulia Rubanova · Jesse Bettencourt · David Duvenaud

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.

Tue 4 Dec. 13:05 - 13:10 PST

Spotlight
Bias and Generalization in Deep Generative Models: An Empirical Study

Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon

In high dimensional settings, density estimation algorithms rely crucially on their inductive bias. Despite recent empirical success, the inductive bias of deep generative models is not well understood. In this paper we propose a framework to systematically investigate bias and generalization in deep generative models of images by probing the learning algorithm with carefully designed training datasets. By measuring properties of the learned distribution, we are able to find interesting patterns of generalization. We verify that these patterns are consistent across datasets, common models and architectures.

Tue 4 Dec. 13:10 - 13:15 PST

Spotlight
Robustness of conditional GANs to noisy labels

Kiran Thekumparampil · Ashish Khetan · Zinan Lin · Sewoong Oh

We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by accompanying multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN.

Tue 4 Dec. 13:15 - 13:20 PST

Spotlight
BourGAN: Generative Networks with Metric Embeddings

Chang Xiao · Peilin Zhong · Changxi Zheng

This paper addresses the mode collapse for generative adversarial networks (GANs). We view modes as a geometric structure of data distribution in a metric space. Under this geometric lens, we embed subsamples of the dataset from an arbitrary metric space into the L2 space, while preserving their pairwise distance distribution. Not only does this metric embedding determine the dimensionality of the latent space automatically, it also enables us to construct a mixture of Gaussians to draw latent space random vectors. We use the Gaussian mixture model in tandem with a simple augmentation of the objective function to train GANs. Every major step of our method is supported by theoretical analysis, and our experiments on real and synthetic data confirm that the generator is able to produce samples spreading over most of the modes while avoiding unwanted samples, outperforming several recent GAN variants on a number of metrics and offering new features.

Tue 4 Dec. 13:20 - 13:25 PST

Spotlight
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs

Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson

The loss functions of deep neural networks are complex and their geometric properties are not well understood. We show that the optima of these complex loss functions are in fact connected by simple curves, over which training and test accuracy are nearly constant. We introduce a training procedure to discover these high-accuracy pathways between modes. Inspired by this new geometric insight, we also propose a new ensembling method entitled Fast Geometric Ensembling (FGE). Using FGE we can train high-performing ensembles in the time required to train a single model. We achieve improved performance compared to the recent state-of-the-art Snapshot Ensembles, on CIFAR-10, CIFAR-100, and ImageNet.

Tue 4 Dec. 13:25 - 13:40 PST

Oral
How Does Batch Normalization Help Optimization?

Shibani Santurkar · Dimitris Tsipras · Andrew Ilyas · Aleksander Madry

Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "internal covariate shift". In this work, we demonstrate that such distributional stability of layer inputs has little to do with the success of BatchNorm. Instead, we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training.

Tue 4 Dec. 13:40 - 13:45 PST

Spotlight
Training Neural Networks Using Features Replay

Zhouyuan Huo · Bin Gu · Heng Huang

Training a neural network using backpropagation algorithm requires passing error gradients sequentially through the network. The backward locking prevents us from updating network layers in parallel and fully leveraging the computing resources. Recently, there are several works trying to decouple and parallelize the backpropagation algorithm. However, all of them suffer from severe accuracy loss or memory explosion when the neural network is deep. To address these challenging issues, we propose a novel parallel-objective formulation for the objective function of the neural network. After that, we introduce features replay algorithm and prove that it is guaranteed to converge to critical points for the non-convex problem under certain conditions. Finally, we apply our method to training deep convolutional neural networks, and the experimental results show that the proposed method achieves {faster} convergence, {lower} memory consumption, and {better} generalization error than compared methods.

Tue 4 Dec. 13:45 - 13:50 PST

Spotlight
Step Size Matters in Deep Learning

Kamil Nar · Shankar Sastry

Training a neural network with the gradient descent algorithm gives rise to a discrete-time nonlinear dynamical system. Consequently, behaviors that are typically observed in these systems emerge during training, such as convergence to an orbit but not to a fixed point or dependence of convergence on the initialization. Step size of the algorithm plays a critical role in these behaviors: it determines the subset of the local optima that the algorithm can converge to, and it specifies the magnitude of the oscillations if the algorithm converges to an orbit. To elucidate the effects of the step size on training of neural networks, we study the gradient descent algorithm as a discrete-time dynamical system, and by analyzing the Lyapunov stability of different solutions, we show the relationship between the step size of the algorithm and the solutions that can be obtained with this algorithm. The results provide an explanation for several phenomena observed in practice, including the deterioration in the training error with increased depth, the hardness of estimating linear mappings with large singular values, and the distinct performance of deep residual networks.

Tue 4 Dec. 13:50 - 13:55 PST

Spotlight
Neural Tangent Kernel: Convergence and Generalization in Neural Networks

Arthur Jacot-Guillarmod · Clement Hongler · Franck Gabriel

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit, thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function (which maps input vectors to output vectors) follows the so-called kernel gradient associated with a new object, which we call the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK.

We then focus on the setting of least-squares regression and show that in the infinite-width limit, the network function follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping.

Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.

Tue 4 Dec. 13:55 - 14:00 PST

Spotlight
Hierarchical Graph Representation Learning with Differentiable Pooling

Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark datasets.