Skip to yearly menu bar Skip to main content


Poster

Trust Region-Guided Proximal Policy Optimization

Yuhui Wang · Hao He · Xiaoyang Tan · Yaozhong Gan

East Exhibition Hall B, C #214

Keywords: [ Reinforcement Learning ] [ Reinforcement Learning and Planning ] [ Markov Decision Processes ]


Abstract:

Proximal policy optimization (PPO) is one of the most popular deep reinforcement learning (RL) methods, achieving state-of-the-art performance across a wide range of challenging tasks. However, as a model-free RL method, the success of PPO relies heavily on the effectiveness of its exploratory policy search. In this paper, we give an in-depth analysis on the exploration behavior of PPO, and show that PPO is prone to suffer from the risk of lack of exploration especially under the case of bad initialization, which may lead to the failure of training or being trapped in bad local optima. To address these issues, we proposed a novel policy optimization method, named Trust Region-Guided PPO (TRGPPO), which adaptively adjusts the clipping range within the trust region. We formally show that this method not only improves the exploration ability within the trust region but enjoys a better performance bound compared to the original PPO as well. Extensive experiments verify the advantage of the proposed method.

Live content is unavailable. Log in and register to view live content