Skip to yearly menu bar Skip to main content


Poster

Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression

Ruidi Chen · Yannis Paschalidis

East Exhibition Hall B, C #59

Keywords: [ Algorithms ] [ Ranking and Preference Learning ] [ Regularization ] [ Algorithms -> Regression; Applications -> Health; Theory -> Learning Theory; Theory ]


Abstract:

This paper develops a prediction-based prescriptive model for optimal decision making that (i) predicts the outcome under each action using a robust nonlinear model, and (ii) adopts a randomized prescriptive policy determined by the predicted outcomes. The predictive model combines a new regularized regression technique, which was developed using Distributionally Robust Optimization (DRO) with an ambiguity set constructed from the Wasserstein metric, with the K-Nearest Neighbors (K-NN) regression, which helps to capture the nonlinearity embedded in the data. We show theoretical results that guarantee the out-of-sample performance of the predictive model, and prove the optimality of the randomized policy in terms of the expected true future outcome. We demonstrate the proposed methodology on a hypertension dataset, showing that our prescribed treatment leads to a larger reduction in the systolic blood pressure compared to a series of alternatives. A clinically meaningful threshold level used to activate the randomized policy is also derived under a sub-Gaussian assumption on the predicted outcome.

Live content is unavailable. Log in and register to view live content