Skip to yearly menu bar Skip to main content


Poster

Powerset Convolutional Neural Networks

Chris Wendler · Markus PĆ¼schel · Dan Alistarh

East Exhibition Hall B, C #148

Keywords: [ Deep Learning ] [ Algorithms -> Classification; Applications -> Signal Processing; Deep Learning -> CNN Architectures; Deep Learning ] [ Embedding ]


Abstract:

We present a novel class of convolutional neural networks (CNNs) for set functions, i.e., data indexed with the powerset of a finite set. The convolutions are derived as linear, shift-equivariant functions for various notions of shifts on set functions. The framework is fundamentally different from graph convolutions based on the Laplacian, as it provides not one but several basic shifts, one for each element in the ground set. Prototypical experiments with several set function classification tasks on synthetic datasets and on datasets derived from real-world hypergraphs demonstrate the potential of our new powerset CNNs.

Live content is unavailable. Log in and register to view live content