Poster
Extending Stein's unbiased risk estimator to train deep denoisers with correlated pairs of noisy images
Magauiya Zhussip · Shakarim Soltanayev · Se Young Chun
East Exhibition Hall B, C #102
Keywords: [ Algorithms ] [ Unsupervised Learning ] [ Applications ] [ Denoising ]
Recently, Stein's unbiased risk estimator (SURE) has been applied to unsupervised training of deep neural network Gaussian denoisers that outperformed classical non-deep learning based denoisers and yielded comparable performance to those trained with ground truth. While SURE requires only one noise realization per image for training, it does not take advantage of having multiple noise realizations per image when they are available (e.g., two uncorrelated noise realizations per image for Noise2Noise). Here, we propose an extended SURE (eSURE) to train deep denoisers with correlated pairs of noise realizations per image and applied it to the case with two uncorrelated realizations per image to achieve better performance than SURE based method and comparable results to Noise2Noise. Then, we further investigated the case with imperfect ground truth (i.e., mild noise in ground truth) that may be obtained considering painstaking, time-consuming, and even expensive processes of collecting ground truth images with multiple noisy images. For the case of generating noisy training data by adding synthetic noise to imperfect ground truth to yield correlated pairs of images, our proposed eSURE based training method outperformed conventional SURE based method as well as Noise2Noise. Code is available at https://github.com/Magauiya/Extended_SURE
Live content is unavailable. Log in and register to view live content