Poster
Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function
Zihan Zhang · Xiangyang Ji
East Exhibition Hall B, C #211
Keywords: [ Reinforcement Learning ] [ Reinforcement Learning and Planning ] [ Decision and Control; Reinforcement Learning and Planning ] [ Algorithms -> Online Learning; Reinforcement Learning and Planning ]
[
Abstract
]
Abstract:
We present an algorithm based on the \emph{Optimism in the Face of Uncertainty} (OFU) principle which is able to learn Reinforcement Learning (RL) modeled by Markov decision process (MDP) with finite state-action space efficiently.
By evaluating the state-pair difference of the optimal bias function $h^{*}$, the proposed algorithm achieves a regret bound of $\tilde{O}(\sqrt{SAHT})$\footnote{The symbol $\tilde{O}$ means $O$ with log factors ignored. } for MDP with $S$ states and $A$ actions, in the case that an upper bound $H$ on the span of $h^{*}$, i.e., $sp(h^{*})$ is known.
This result outperforms the best previous regret bounds $\tilde{O}(S\sqrt{AHT}) $\citep{fruit2019improved} by a factor of $\sqrt{S}$.
Furthermore, this regret bound matches the lower bound of $\Omega(\sqrt{SAHT}) $\citep{jaksch2010near} up to a logarithmic factor. As a consequence, we show that there is a near optimal regret bound of $\tilde{O}(\sqrt{SADT})$ for MDPs with a finite diameter $D$ compared to the lower bound of $\Omega(\sqrt{SADT}) $\citep{jaksch2010near}.
Live content is unavailable. Log in and register to view live content