Skip to yearly menu bar Skip to main content


Poster

Optimal Sparsity-Sensitive Bounds for Distributed Mean Estimation

zengfeng Huang · Ziyue Huang · Yilei WANG · Ke Yi

East Exhibition Hall B, C #31

Keywords: [ Communication- or Memory-Bounded Learning ] [ Applications ] [ Information Theory ] [ Algorithms -> Large Scale Learning; Theory -> Computational Complexity; Theory ]


Abstract:

We consider the problem of estimating the mean of a set of vectors, which are stored in a distributed system. This is a fundamental task with applications in distributed SGD and many other distributed problems, where communication is a main bottleneck for scaling up computations. We propose a new sparsity-aware algorithm, which improves previous results both theoretically and empirically. The communication cost of our algorithm is characterized by Hoyer's measure of sparseness. Moreover, we prove that the communication cost of our algorithm is information-theoretic optimal up to a constant factor in all sparseness regime. We have also conducted experimental studies, which demonstrate the advantages of our method and confirm our theoretical findings.

Live content is unavailable. Log in and register to view live content