Skip to yearly menu bar Skip to main content


Poster

Learning about an exponential amount of conditional distributions

Mohamed Ishmael Belghazi · Maxime Oquab · David Lopez-Paz

East Exhibition Hall B, C #69

Keywords: [ Algorithms ] [ Unsupervised Learning ] [ Representation Learning ]


Abstract:

We introduce the Neural Conditioner (NC), a self-supervised machine able to learn about all the conditional distributions of a random vector X. The NC is a function NC(x⋅a,a,r) that leverages adversarial training to match each conditional distribution P(Xr|Xa=xa). After training, the NC generalizes to sample from conditional distributions never seen, including the joint distribution. The NC is also able to auto-encode examples, providing data representations useful for downstream classification tasks. In sum, the NC integrates different self-supervised tasks (each being the estimation of a conditional distribution) and levels of supervision (partially observed data) seamlessly into a single learning experience.

Live content is unavailable. Log in and register to view live content