Poster
Neural Networks with Cheap Differential Operators
Tian Qi Chen · David Duvenaud
East Exhibition Hall B, C #56
Keywords: [ Deep Learning ] [ Algorithms -> Density Estimation; Algorithms -> Uncertainty Estimation; Algorithms -> Unsupervised Learning; Deep Learning ] [ G ]
Gradients of neural networks can be computed efficiently for any architecture, but some applications require computing differential operators with higher time complexity. We describe a family of neural network architectures that allow easy access to a family of differential operators involving \emph{dimension-wise derivatives}, and we show how to modify the backward computation graph to compute them efficiently. We demonstrate the use of these operators for solving root-finding subproblems in implicit ODE solvers, exact density evaluation for continuous normalizing flows, and evaluating the Fokker-Planck equation for training stochastic differential equation models.
Live content is unavailable. Log in and register to view live content