Skip to yearly menu bar Skip to main content


Keynote talk
in
Workshop: Optimal Transport and Machine Learning

Graphical Optimal Transport and its applications

Yongxin Chen


Abstract:

Multi-marginal optimal transport (MOT) is a generalization of optimal transport theory to settings with possibly more than two marginals. The computation of the solutions to MOT problems has been a longstanding challenge. In this talk, we introduce graphical optimal transport, a special class of MOT problems. We consider MOT problems from a probabilistic graphical model perspective and point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized MOT is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for MOT by leveraging the well-developed algorithms in Bayesian inference. We will cover recent developments of graphical optimal transport in theory and algorithms. We will also go over several applications in aggregate filtering and mean field games.