NeurIPS 2021
Skip to yearly menu bar Skip to main content


Optimal Transport and Machine Learning

Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova

Over the last few years, optimal transport (OT) has quickly become a central topic in machine learning. OT is now routinely used in many areas of ML, ranging from the theoretical use of OT flow for controlling learning algorithms to the inference of high-dimensional cell trajectories in genomics. The Optimal Transport and Machine Learning (OTML) workshop series (in '14, '17, '19) has been instrumental in shaping this research thread. For this new installment of OTML, we aim even bigger by hosting an exceptional keynote speaker, Alessio Figalli, who received the 2018 Fields Medal for his breakthroughs in the analysis of the regularity properties of OT. OTML will be a unique opportunity for cross-fertilization between recent advances in pure mathematics and challenging high-dimensional learning problems.

Chat is not available.
Timezone: America/Los_Angeles