Skip to yearly menu bar Skip to main content

Workshop: Shared Visual Representations in Human and Machine Intelligence

Neural Structure Mapping For Learning Abstract Visual Analogies

Shashank Shekhar · Graham Taylor


Building conceptual abstractions from sensory information and then reasoning about them is central to human intelligence. Abstract reasoning both relies on, and is facilitated by, our ability to make analogies about concepts from known domains to novel domains. Structure Mapping Theory of human analogical reasoning posits that analogical mappings rely on (higher-order) relations and not on the sensory content of the domain. This enables humans to reason systematically about novel domains, a problem with which machine learning (ML) models tend to struggle. We introduce a two-stage neural framework, which we label Neural Structure Mapping (NSM), to learn visual analogies from Raven's Progressive Matrices, an abstract visual reasoning test of fluid intelligence. Our framework uses (1) a multi-task visual relationship encoder to extract constituent concepts from raw visual input in the source domain, and (2) a neural module net analogy inference engine to reason compositionally about the inferred relation in the target domain. Our NSM approach (a) isolates the relational structure from the source domain with high accuracy, and (b) successfully utilizes this structure for analogical reasoning in the target domain.

Chat is not available.