Skip to yearly menu bar Skip to main content


Shared Visual Representations in Human and Machine Intelligence

Arturo Deza · Joshua Peterson · N Apurva Ratan Murty · Tom Griffiths

Mon 13 Dec, 6:45 a.m. PST

The goal of the 3rd Shared Visual Representations in Human and Machine Intelligence \textit{(SVRHM)} workshop is to disseminate relevant, parallel findings in the fields of computational neuroscience, psychology, and cognitive science that may inform modern machine learning. In the past few years, machine learning methods---especially deep neural networks---have widely permeated the vision science, cognitive science, and neuroscience communities. As a result, scientific modeling in these fields has greatly benefited, producing a swath of potentially critical new insights into the human mind. Since human performance remains the gold standard for many tasks, these cross-disciplinary insights and analytical tools may point towards solutions to many of the current problems that machine learning researchers face (\textit{e.g.,} adversarial attacks, compression, continual learning, and self-supervised learning). Thus we propose to invite leading cognitive scientists with strong computational backgrounds to disseminate their findings to the machine learning community with the hope of closing the loop by nourishing new ideas and creating cross-disciplinary collaborations. In particular, this year's version of the workshop will have a heavy focus on testing new inductive biases on novel datasets as we work on tasks that go beyond object recognition.

Chat is not available.
Timezone: America/Los_Angeles