Skip to yearly menu bar Skip to main content


Poster

Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems

Bo Sun · Russell Lee · Mohammad Hajiesmaili · Adam Wierman · Danny Tsang

Virtual

Keywords: [ Robustness ]


Abstract:

This paper leverages machine-learned predictions to design competitive algorithms for online conversion problems with the goal of improving the competitive ratio when predictions are accurate (i.e., consistency), while also guaranteeing a worst-case competitive ratio regardless of the prediction quality (i.e., robustness). We unify the algorithmic design of both integral and fractional conversion problems, which are also known as the 1-max-search and one-way trading problems, into a class of online threshold-based algorithms (OTA). By incorporating predictions into design of OTA, we achieve the Pareto-optimal trade-off of consistency and robustness, i.e., no online algorithm can achieve a better consistency guarantee given for a robustness guarantee. We demonstrate the performance of OTA using numerical experiments on Bitcoin conversion.

Chat is not available.