Session

Oral Session 5: Fairness and Privacy

Moderator: Brendan McMahan



Fri 10 Dec 4 p.m. PST — 5 p.m. PST

Abstract:

Chat is not available.

Fri 10 Dec. 16:00 - 16:15 PST

(Oral)
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning

Yangsibo Huang · Samyak Gupta · Zhao Song · Kai Li · Sanjeev Arora

Gradient inversion attack (or input recovery from gradient) is an emerging threat to the security and privacy preservation of Federated learning, whereby malicious eavesdroppers or participants in the protocol can recover (partially) the clients' private data. This paper evaluates existing attacks and defenses. We find that some attacks make strong assumptions about the setup. Relaxing such assumptions can substantially weaken these attacks. We then evaluate the benefits of three proposed defense mechanisms against gradient inversion attacks. We show the trade-offs of privacy leakage and data utility of these defense methods, and find that combining them in an appropriate manner makes the attack less effective, even under the original strong assumptions. We also estimate the computation cost of end-to-end recovery of a single image under each evaluated defense. Our findings suggest that the state-of-the-art attacks can currently be defended against with minor data utility loss, as summarized in a list of potential strategies.

Fri 10 Dec. 16:15 - 16:20 PST

(Q&A)
Q&A

Fri 10 Dec. 16:20 - 16:35 PST

(Oral)
Retiring Adult: New Datasets for Fair Machine Learning

Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt

Although the fairness community has recognized the importance of data, researchers in the area primarily rely on UCI Adult when it comes to tabular data. Derived from a 1994 US Census survey, this dataset has appeared in hundreds of research papers where it served as the basis for the development and comparison of many algorithmic fairness interventions. We reconstruct a superset of the UCI Adult data from available US Census sources and reveal idiosyncrasies of the UCI Adult dataset that limit its external validity. Our primary contribution is a suite of new datasets derived from US Census surveys that extend the existing data ecosystem for research on fair machine learning. We create prediction tasks relating to income, employment, health, transportation, and housing. The data span multiple years and all states of the United States, allowing researchers to study temporal shift and geographic variation. We highlight a broad initial sweep of new empirical insights relating to trade-offs between fairness criteria, performance of algorithmic interventions, and the role of distribution shift based on our new datasets. Our findings inform ongoing debates, challenge some existing narratives, and point to future research directions.

Fri 10 Dec. 16:35 - 16:40 PST

(Q&A)
Q&A