Bayesian Deep Learning

Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling

Abstract Workshop Website
Tue 14 Dec, 3 a.m. PST


To deploy deep learning in the wild responsibly, we must know when models are making unsubstantiated guesses. The field of Bayesian Deep Learning (BDL) has been a focal point in the ML community for the development of such tools. Big strides have been made in BDL in recent years, with the field making an impact outside of the ML community, in fields including astronomy, medical imaging, physical sciences, and many others. But the field of BDL itself is facing an evaluation crisis: most BDL papers evaluate uncertainty estimation quality of new methods on MNIST and CIFAR alone, ignoring needs of real world applications which use BDL. Therefore, apart from discussing latest advances in BDL methodologies, a particular focus of this year’s programme is on the reliability of BDL techniques in downstream tasks. This focus is reflected through invited talks from practitioners in other fields and by working together with the two NeurIPS challenges in BDL — the Approximate Inference in Bayesian Deep Learning Challenge and the Shifts Challenge on Robustness and Uncertainty under Real-World Distributional Shift — advertising work done in applications including autonomous driving, medical, space, and more. We hope that the mainstream BDL community will adopt real world benchmarks based on such applications, pushing the field forward beyond MNIST and CIFAR evaluations.

Chat is not available.

Timezone: America/Los_Angeles »