Skip to yearly menu bar Skip to main content

Workshop: Goal-Conditioned Reinforcement Learning

Asymmetric Norms to Approximate the Minimum Action Distance

Lorenzo Steccanella · Anders Jonsson

Keywords: [ Distance Learning ] [ Representation Learning ] [ goal conditioned reinforcement learning ]


This paper presents a state representation for reward-free Markov decision processes. The idea is to learn, in a self-supervised manner, an embedding space where distances between pairs of embedded states correspond to the minimum number of actions needed to transition between them. Unlike previous methods, our approach incorporates an asymmetric norm parametrization, enabling accurate approximations of minimum action distances in environments with inherent asymmetry. We show how this representation can be leveraged to learn goal-conditioned policies, providing a notion of similarity between states and goals and a useful heuristic distance to guide planning. To validate our approach, we conduct empirical experiments on both symmetric and asymmetric environments. Our results show that our asymmetric norm parametrization performs comparably to symmetric norms in symmetric environments and surpasses symmetric norms in asymmetric environments.

Chat is not available.