Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

130 Results

<<   <   Page 6 of 11   >   >>
Poster
Thu 15:00 A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive Noise Models
Alexander Reisach · Myriam Tami · Christof Seiler · Antoine Chambaz · Sebastian Weichwald
Workshop
Learning to ignore: Single Source Domain Generalization via Oracle Regularization
Dong Kyu Cho · Sanghack Lee
Oral
Tue 13:40 Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar
Workshop
Score-based Causal Representation Learning from Interventions: Nonparametric Identifiability
Burak Varıcı · Emre Acartürk · Karthikeyan Shanmugam · Ali Tajer
Workshop
Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms
Aneesh Komanduri · Yongkai Wu · Feng Chen · Xintao Wu
Workshop
Learning Endogenous Representation in Reinforcement Learning via Advantage Estimation
Hsiao-Ru Pan · Bernhard Schölkopf
Poster
Wed 8:45 Detecting hidden confounding in observational data using multiple environments
Rickard Karlsson · Jesse Krijthe
Workshop
Cells2Vec: Bridging the gap between experiments and simulations using causal representation learning
Dhruva Rajwade · Atiyeh Ahmadi · Brian Ingalls
Workshop
Expediting Reinforcement Learning by Incorporating Temporal Causal Information
Jan Corazza · Daniel Neider · Zhe Xu · Hadi Partovi Aria
Workshop
Causal Markov Blanket Representations for Domain Generalization Prediction
Naiyu Yin · Hanjing Wang · Tian Gao · Amit Dhurandhar · Qiang Ji
Workshop
Object-centric architectures enable efficient causal representation learning
Amin Mansouri · Jason Hartford · Yan Zhang · Yoshua Bengio
Workshop
A Causal Ordering Prior for Unsupervised Representation Learning
Avinash Kori · Pedro Sanchez · Konstantinos Vilouras · Ben Glocker · Sotirios Tsaftaris