Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

14 Results

<<   <   Page 1 of 2   >   >>
Workshop
Semi-Supervised Graph Imbalanced Regression
Gang Liu · Tong Zhao · Eric Inae · Tengfei Luo · Meng Jiang
Poster
Tue 8:45 Regularization properties of adversarially-trained linear regression
Antonio Ribeiro · Dave Zachariah · Francis Bach · Thomas Schön
Workshop
Exploring the Properties and Structure of Real Knowledge Graphs across Scientific Disciplines
Nedelina Teneva · Estevam Hruschka
Workshop
AnisoGNN: physics-informed graph neural networks that generalize to anisotropic properties of polycrystals
Guangyu Hu · Marat Latypov
Workshop
Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
Sagar Srinivas Sakhinana · Venkataramana Runkana
Workshop
DspGNN: Bringing Spectral Design to Discrete Time Dynamic Graph Neural Networks for Edge Regression
Leshanshui Yang · Clement Chatelain · Sébastien Adam
Workshop
Knowledge Graphs are not Created Equal: Exploring the Properties and Structure of Real KGs
Nedelina Teneva · Estevam Hruschka
Workshop
HoloNets: Spectral Convolutions do extend to Directed Graphs
Christian Koke · Daniel Cremers
Poster
Thu 15:00 Network Regression with Graph Laplacians
Yidong Zhou · Hans-Georg Müller
Workshop
Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
Sagar Srinivas Sakhinana · Venkataramana Runkana
Workshop
Fri 7:50 Investigating extrapolation and low-data challenges via contrastive learning of chemical compositions
Federico Ottomano · Giovanni De Felice · Rahul Savani · Vladimir Gusev · Matthew Rosseinsky
Poster
Tue 15:15 Learning Large Graph Property Prediction via Graph Segment Training
Kaidi Cao · Mangpo Phothilimthana · Sami Abu-El-Haija · Dustin Zelle · Yanqi Zhou · Charith Mendis · Jure Leskovec · Bryan Perozzi