Sat 6:50 a.m. - 7:00 a.m.
|
Introducing the Optimal Transport and Machine Learning (OTML) Workshop
(
Introduction
)
>
SlidesLive Video
|
馃敆
|
Sat 7:00 a.m. - 8:00 a.m.
|
The making of the JKO scheme (Felix Otto)
(
Plenary talk
)
>
SlidesLive Video
|
馃敆
|
Sat 8:00 a.m. - 8:30 a.m.
|
Coffee break
|
馃敆
|
Sat 8:30 a.m. - 9:00 a.m.
|
Unbalanced Optimal Transport: Efficient solutions for outlier-robust machine learning (Laetitia Chapel)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 9:00 a.m. - 9:15 a.m.
|
Self-Supervised Learning with the Matching Gap (Zoe Piran)
(
Contributing talk
)
>
SlidesLive Video
|
馃敆
|
Sat 9:15 a.m. - 9:30 a.m.
|
Accelerating Motion Planning via Optimal Transport
(
Oral
)
>
link
SlidesLive Video
|
An T. Le 路 Georgia Chalvatzaki 路 Armin Biess 路 Jan Peters
馃敆
|
Sat 9:30 a.m. - 10:00 a.m.
|
Learning on graphs with Gromov-Wasserstein: from unsupervised learning to GNN (R茅mi Flamary)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 10:00 a.m. - 11:30 a.m.
|
Lunch + Poster Session I
|
馃敆
|
Sat 11:30 a.m. - 12:00 p.m.
|
Amortized optimization for optimal transport (Brandon Amos)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 12:00 p.m. - 12:30 p.m.
|
Diffusion Schrodinger Bridge Matching (Arnaud Doucet)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 12:30 p.m. - 1:00 p.m.
|
Sketched Wasserstein Distances (Florentina Bunea)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 1:00 p.m. - 1:15 p.m.
|
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
(
Oral
)
>
link
SlidesLive Video
|
Aniket Das 路 Dheeraj Nagaraj
馃敆
|
Sat 1:15 p.m. - 1:30 p.m.
|
Towards a Statistical Theory of Learning to Learn In-context with Transformers
(
Oral
)
>
link
SlidesLive Video
|
Youssef Mroueh
馃敆
|
Sat 1:30 p.m. - 2:00 p.m.
|
Coffee break
|
馃敆
|
Sat 2:00 p.m. - 2:30 p.m.
|
Optimal transport on graphs, manifolds and trees (Smita Krishnaswamy)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 2:30 p.m. - 3:00 p.m.
|
Variational inference via Wasserstein gradient flows (Sinho Chewi)
(
Keynote talk
)
>
SlidesLive Video
|
馃敆
|
Sat 3:00 p.m. - 3:15 p.m.
|
Closing remarks from organizers
(
Closing remarks
)
>
SlidesLive Video
|
馃敆
|
Sat 3:15 p.m. - 3:30 p.m.
|
Poster session II + hangout
(
Poster session
)
>
|
馃敆
|
-
|
Network Regression with Wasserstein Distances
(
Poster
)
>
link
|
Alexander Zalles 路 Cesar Uribe 路 Kai M. Hung 路 Ann Finneran 路 Lydia Beaudrot
馃敆
|
-
|
Learning via Wasserstein-Based High Probability Generalisation Bounds
(
Poster
)
>
link
|
Paul Viallard 路 Maxime Haddouche 路 Umut Simsekli 路 Benjamin Guedj
馃敆
|
-
|
Improved Stein Variational Gradient Descent with Importance Weights
(
Poster
)
>
link
|
Lukang Sun 路 Peter Richtarik
馃敆
|
-
|
On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective
(
Poster
)
>
link
|
Mathieu Serrurier 路 Franck Mamalet 路 Thomas FEL 路 Louis B茅thune 路 Thibaut Boissin
馃敆
|
-
|
Entropic Gromov-Wasserstein Distances: Stability and Algorithms
(
Poster
)
>
link
|
Gabriel Rioux 路 Ziv Goldfeld 路 Kengo Kato
馃敆
|
-
|
SpecTr++: Improved transport plans for speculative decoding of large language models
(
Poster
)
>
link
|
Kwangjun Ahn 路 Ahmad Beirami 路 Ziteng Sun 路 Ananda Theertha Suresh
馃敆
|
-
|
Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching
(
Poster
)
>
link
|
Kai Yan 路 Alex Schwing 路 Yu-Xiong Wang
馃敆
|
-
|
Semi-discrete Gromov-Wasserstein distances: Existence of Gromov-Monge Maps and Statistical Theory
(
Poster
)
>
link
|
Gabriel Rioux 路 Ziv Goldfeld 路 Kengo Kato
馃敆
|
-
|
Sliced Wasserstein Estimation with Control Variates
(
Poster
)
>
link
|
Khai Nguyen 路 Nhat Ho
馃敆
|
-
|
Zero-shot Cross-task Preference Alignment for Offline RL via Optimal Transport
(
Poster
)
>
link
|
Runze Liu 路 Yali Du 路 Fengshuo Bai 路 Jiafei Lyu 路 Xiu Li
馃敆
|
-
|
Accelerating Motion Planning via Optimal Transport
(
Poster
)
>
link
|
An T. Le 路 Georgia Chalvatzaki 路 Armin Biess 路 Jan Peters
馃敆
|
-
|
Outlier-Robust Wasserstein DRO
(
Poster
)
>
link
|
Sloan Nietert 路 Ziv Goldfeld 路 Soroosh Shafiee
馃敆
|
-
|
Towards a Statistical Theory of Learning to Learn In-context with Transformers
(
Poster
)
>
link
|
Youssef Mroueh
馃敆
|
-
|
Estimating Fr茅chet bounds for validating programmatic weak supervision
(
Poster
)
>
link
|
Felipe Maia Polo 路 Mikhail Yurochkin 路 Moulinath Banerjee 路 Subha Maity 路 Yuekai Sun
馃敆
|
-
|
Semidefinite Relaxations of the Gromov-Wasserstein Distance
(
Poster
)
>
link
|
Junyu Chen 路 Binh T. Nguyen 路 Yong Sheng Soh
馃敆
|
-
|
Invertible normalizing flow neural networks by JKO scheme
(
Poster
)
>
link
|
Chen Xu 路 Xiuyuan Cheng 路 Yao Xie
馃敆
|
-
|
SyMOT-Flow: Learning optimal transport flow for two arbitrary distributions with maximum mean discrepancy
(
Poster
)
>
link
|
Zhe Xiong 路 Qiaoqiao Ding 路 Xiaoqun Zhang
馃敆
|
-
|
Computing high-dimensional optimal transport by flow neural networks
(
Poster
)
>
link
|
Chen Xu 路 Xiuyuan Cheng 路 Yao Xie
馃敆
|
-
|
Duality and Sample Complexity for the Gromov-Wasserstein Distance
(
Poster
)
>
link
|
Zhengxin Zhang 路 Ziv Goldfeld 路 Youssef Mroueh 路 Bharath Sriperumbudur
馃敆
|
-
|
PTLP: Partial Transport Lp Distances
(
Poster
)
>
link
|
Xinran Liu 路 Yikun Bai 路 Huy Tran 路 Zhanqi Zhu 路 Matthew Thorpe 路 Soheil Kolouri
馃敆
|
-
|
Optimal Transport for Measures with Noisy Tree Metric
(
Poster
)
>
link
|
Tam Le 路 Truyen Nguyen 路 Kenji Fukumizu
馃敆
|
-
|
Repairing Regressors for Fair Binary Classification at Any Decision Threshold
(
Poster
)
>
link
|
Kweku Kwegyir-Aggrey 路 Jessica Dai 路 A. Feder Cooper 路 John Dickerson 路 Keegan Hines 路 Suresh Venkatasubramanian
馃敆
|
-
|
Causal Discovery via Monotone Triangular Transport Maps
(
Poster
)
>
link
|
Sina Akbari 路 Luca Ganassali 路 Negar Kiyavash
馃敆
|
-
|
Applications of Optimal Transport Distances in Unsupervised AutoML
(
Poster
)
>
link
|
prabhant singh 路 Joaquin Vanschoren
馃敆
|
-
|
Data-Conditional Diffusion Bridges
(
Poster
)
>
link
|
Ella Tamir 路 Martin Trapp 路 Arno Solin
馃敆
|
-
|
Characterizing Out-of-Distribution Error via Optimal Transport
(
Poster
)
>
link
|
Yuzhe Lu 路 Yilong Qin 路 Runtian Zhai 路 Andrew Shen 路 Ketong Chen 路 Zhenlin Wang 路 Soheil Kolouri 路 Simon Stepputtis 路 Joseph Campbell 路 Katia Sycara
馃敆
|
-
|
A generative flow model for conditional sampling via optimal transport
(
Poster
)
>
link
|
Jason Alfonso 路 Ricardo Baptista 路 Anupam Bhakta 路 Noam Gal 路 Alfin Hou 路 Vasilisa Lyubimova 路 Daniel Pocklington 路 Josef Sajonz 路 Giulio Trigila 路 Ryan Tsai
馃敆
|
-
|
Understanding Reward Ambiguity Through Optimal Transport Theory in Inverse Reinforcement Learning
(
Poster
)
>
link
|
Ali Baheri
馃敆
|
-
|
Optimal Transport with Adaptive Regularisation
(
Poster
)
>
link
|
Hugues Van Assel 路 Titouan Vayer 路 R茅mi Flamary 路 Nicolas Courty
馃敆
|
-
|
SpecTr: Fast Speculative Decoding via Optimal Transport
(
Poster
)
>
link
|
Ziteng Sun 路 Ananda Theertha Suresh 路 Jae Hun Ro 路 Ahmad Beirami 路 Himanshu Jain 路 Felix Yu
馃敆
|
-
|
Quantum Theory and Application of Contextual Optimal Transport
(
Poster
)
>
link
|
Nicola Mariella 路 Jannis Born 路 Albert Akhriev 路 Francesco Tacchino 路 Christa Zoufal 路 Eugene Koskin 路 Ivano Tavernelli 路 Stefan Woerner 路 Maria Anna Rapsomaniki 路 Sergiy Zhuk
馃敆
|
-
|
Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein
(
Poster
)
>
link
|
Hugues Van Assel 路 C茅dric Vincent-Cuaz 路 Titouan Vayer 路 R茅mi Flamary 路 Nicolas Courty
馃敆
|
-
|
On Schr枚dinger Bridge Matching and Expectation Maximization
(
Poster
)
>
link
|
Rob Brekelmans 路 Kirill Neklyudov
馃敆
|
-
|
Optimal transport for vector Gaussian mixture models
(
Poster
)
>
link
|
Jiening Zhu 路 Kaiming Xu 路 Allen Tannenbaum
馃敆
|
-
|
Learning TSP Algorithmic Prior using Gumbel-Sinkhorn Operator
(
Poster
)
>
link
|
Yimeng Min 路 Carla Gomes
馃敆
|
-
|
Adaptive Algorithms for Continuous-Time Transport: Homotopy-Driven Sampling and a New Interacting Particle System
(
Poster
)
>
link
|
Aimee Maurais 路 Youssef Marzouk
馃敆
|
-
|
Fast and Accurate Cost-Scaling Algorithm for the Semi-Discrete Optimal Transport
(
Poster
)
>
link
|
Pankaj Agarwal 路 Sharath Raghvendra 路 Pouyan Shirzadian 路 Keegan Yao
馃敆
|
-
|
A Computational Framework for Solving Wasserstein Lagrangian Flows
(
Poster
)
>
link
|
Kirill Neklyudov 路 Rob Brekelmans 路 Alexander Tong 路 Lazar Atanackovic 路 Qiang Liu 路 Alireza Makhzani
馃敆
|
-
|
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
(
Poster
)
>
link
|
Aniket Das 路 Dheeraj Nagaraj
馃敆
|
-
|
Fourier-Based Bounds for Wasserstein Distances and Their Implications in Computational Inversion
(
Poster
)
>
link
|
Wanli Hong 路 Vlad Kobzar 路 Kui Ren
馃敆
|