Skip to yearly menu bar Skip to main content


Poster

Boosting the Potential of Large Language Models with an Intelligent Information Assistant

Yujia Zhou · Zheng Liu · Zhicheng Dou


Abstract:

The emergence of Large Language Models (LLMs) has significantly advanced natural language processing, but these models often generate factually incorrect information, known as "hallucination." Initial retrieval-augmented generation (RAG) methods like the "Retrieve-Read" framework was inadequate for complex reasoning tasks. Subsequent prompt-based RAG strategies and Supervised Fine-Tuning (SFT) methods improved performance but required frequent retraining and risked altering foundational LLM capabilities. To cope with these challenges, we propose Assistant-based Retrieval-Augmented Generation (AssistRAG), integrating an intelligent information assistant within LLMs. This assistant manages memory and knowledge through tool usage, action execution, memory building, and plan specification. Using a two-phase training approach—Curriculum Assistant Learning and Reinforced Preference Optimization—AssistRAG enhances information retrieval and decision-making. Experiments show AssistRAG significantly outperforms benchmarks, especially benefiting less advanced LLMs, by providing superior reasoning capabilities and accurate responses.

Live content is unavailable. Log in and register to view live content