Poster
Identify Then Recommend: Towards Unsupervised Group Recommendation
Yue Liu · Shihao Zhu · Tianyuan Yang · Jian Ma · Wenliang Zhong
East Exhibit Hall A-C #4905
[
Abstract
]
Thu 12 Dec 11 a.m. PST
— 2 p.m. PST
Abstract:
Group Recommendation (GR), which aims to recommend items to groups of users, has become a promising and practical direction for recommendation systems. This paper points out two issues of the state-of-the-art GR models. (1) The pre-defined and fixed number of user groups is inadequate for real-time industrial recommendation systems, where the group distribution can shift dynamically. (2) The training schema of existing GR methods is supervised, necessitating expensive user-group and group-item labels, leading to significant annotation costs. To this end, we present a novel unsupervised group recommendation framework named $\underline{\text{I}}$dentify $\underline{\text{T}}$hen $\underline{\text{R}}$ecommend ($\underline{\text{ITR}}$), where it first identifies the user groups in an unsupervised manner even without the pre-defined number of groups, and then two pre-text tasks are designed to conduct self-supervised group recommendation. Concretely, at the group identification stage, we first estimate the adaptive density of each user point, where areas with higher densities are more likely to be recognized as group centers. Then, a heuristic merge-and-split strategy is designed to discover the user groups and decision boundaries. Subsequently, at the self-supervised learning stage, the pull-and-repulsion pre-text task is proposed to optimize the user-group distribution. Besides, the pseudo group recommendation pre-text task is designed to assist the recommendations. Extensive experiments demonstrate the superiority and effectiveness of ITR on both user recommendation (e.g., 22.22\% NDCG@5 $\uparrow$) and group recommendation (e.g., 22.95\% NDCG@5 $\uparrow$). Furthermore, we deploy ITR on the industrial recommender and achieve promising results.
Live content is unavailable. Log in and register to view live content