Poster
Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees
SIJIA CHEN · Yibo Wang · Yi-Feng Wu · Qingguo Chen · Zhao Xu · Weihua Luo · Kaifu Zhang · Lijun Zhang
East Exhibit Hall A-C #2911
[
Abstract
]
Wed 11 Dec 11 a.m. PST
— 2 p.m. PST
Abstract:
Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to improve their reasoning capabilities on complex tasks. This enables them to act as intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2023] utilizes the depth-first search-based decision tree (DFSDT) mechanism for multi-step reasoning with $16000+$ real-world APIs, effectively enhancing the performance of tool-augmented LLMs compared to traditional chain reasoning mechanisms. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT), missing out on the potential learning opportunities from failed paths. Inspired by this, we propose an inference trajectory optimization framework based on preference learning to address this limitation. We first introduce a novel method for constructing preference data from tree-like expert trajectories, which leverages the previously ignored failed explorations in the decision trees. Specifically, we generate a step-wise preference dataset, ToolPreference, from the ToolBench dataset for tool learning. In the subsequent training phase, we first fine-tune the LLM with successful tool-usage expert trajectories and then apply direct preference optimization (DPO) with ToolPreference to update the LLM's policy, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. This approach not only enhances the utilization of original expert data but also broadens the learning space of the model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
Live content is unavailable. Log in and register to view live content