Poster
Semi-Random Matrix Completion via Flow-Based Adaptive Reweighting
Jonathan Kelner · Jerry Li · Allen Liu · Aaron Sidford · Kevin Tian
West Ballroom A-D #6200
[
Abstract
]
Wed 11 Dec 11 a.m. PST
— 2 p.m. PST
Abstract:
We consider the well-studied problem of completing a rank-$r$, $\mu$-incoherent matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ from incomplete observations. We focus on this problem in the semi-random setting where each entry is independently revealed with probability at least $p = \frac{\textup{poly}(r, \mu, \log d)}{d}$. Whereas multiple nearly-linear time algorithms have been established in the more specialized fully-random setting where each entry is revealed with probablity exactly $p$, the only known nearly-linear time algorithm in the semi-random setting is due to [CG18], whose sample complexity has a polynomial dependence on the inverse accuracy and condition number and thus cannot achieve high-accuracy recovery. Our main result is the first high-accuracy nearly-linear time algorithm for solving semi-random matrix completion, and an extension to the noisy observation setting.Our result builds upon the recent short-flat decomposition framework of [KLLST23a, KLLST23b] and leverages fast algorithms for flow problems on graphs to solve adaptive reweighting subproblems efficiently.
Live content is unavailable. Log in and register to view live content