Skip to yearly menu bar Skip to main content


Poster

Identifiability Analysis of Linear ODE Systems with Hidden Confounders

Yuanyuan Wang · Biwei Huang · Wei Huang · Xi Geng · Mingming Gong

West Ballroom A-D #5001
[ ]
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract: The identifiability analysis of linear Ordinary Differential Equation (ODE) systems is a necessary prerequisite for making reliable causal inferences about these systems. While identifiability has been well studied in scenarios where the system is fully observable, the conditions for identifiability remain unexplored when latent variables interact with the system. This paper aims to address this gap by presenting a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders. Specifically, we investigate two cases of such systems. In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific functional forms, such as polynomial functions of time $t$. Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies, with the causal structure of latent variables described by a Directed Acyclic Graph (DAG). The second case represents a more intricate variation of the first case, prompting a more comprehensive identifiability analysis. Accordingly, we conduct detailed identifiability analyses of the second system under various observation conditions, including both continuous and discrete observations from single or multiple trajectories. To validate our theoretical results, we perform a series of simulations, which support and substantiate our findings.

Live content is unavailable. Log in and register to view live content