Oral Poster
The Road Less Scheduled
Aaron Defazio · Xingyu Yang · Ahmed Khaled · Konstantin Mishchenko · Harsh Mehta · Ashok Cutkosky
West Ballroom A-D #5908
[
Abstract
]
[ Project Page ]
Oral
presentation:
Oral Session 1C: Optimization and Learning Theory
Wed 11 Dec 10 a.m. PST — 11 a.m. PST
Wed 11 Dec 11 a.m. PST
— 2 p.m. PST
Wed 11 Dec 10 a.m. PST — 11 a.m. PST
Abstract:
Existing learning rate schedules that do not require specification of the optimization stopping step $T$ are greatly out-performed by learning rate schedules that depend on $T$. We propose an approach that avoids the need for this stopping time by eschewing the use of schedules entirely, while exhibiting state-of-the-art performance compared to schedules across a wide family of problems ranging from convex problems to large-scale deep learning problems. Our Schedule-Free approach introduces no additional hyper-parameters over standard optimizers with momentum. Our method is a direct consequence of a new theory we develop that unifies scheduling and iterate averaging. An open source implementation of our method is available at https://github.com/facebookresearch/schedule_free. Schedule-Free AdamW is the core algorithm behind our winning entry to the MLCommons 2024 AlgoPerf Algorithmic Efficiency Challenge Self-Tuning track.
Live content is unavailable. Log in and register to view live content