Skip to yearly menu bar Skip to main content


Poster

Towards Reliable Model Selection for Unsupervised Domain Adaptation: An Empirical Study and A Certified Baseline

Dapeng Hu · Romy Luo · Jian Liang · Chuan Sheng Foo

West Ballroom A-D #5405
[ ]
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Selecting appropriate hyperparameters is crucial for unlocking the full potential of advanced unsupervised domain adaptation (UDA) methods in unlabeled target domains. Although this challenge remains under-explored, it has recently garnered increasing attention with the proposals of various model selection methods. Reliable model selection should maintain performance across diverse UDA methods and scenarios, especially avoiding highly risky worst-case selections—selecting the model or hyperparameter with the worst performance in the pool.Are existing model selection methods reliable and versatile enough for different UDA tasks? In this paper, we provide a comprehensive empirical study involving 8 existing model selection approaches to answer this question. Our evaluation spans 12 UDA methods across 5 diverse UDA benchmarks and 5 popular UDA scenarios.Surprisingly, we find that none of these approaches can effectively avoid the worst-case selection. In contrast, a simple but overlooked ensemble-based selection approach, which we call EnsV, is both theoretically and empirically certified to avoid the worst-case selection, ensuring high reliability. Additionally, EnsV is versatile for various practical but challenging UDA scenarios, including validation of open-partial-set UDA and source-free UDA.Finally, we call for more attention to the reliability of model selection in UDA: avoiding the worst-case is as significant as achieving peak selection performance and should not be overlooked when developing new model selection methods. Code is available in the supplementary materials.

Live content is unavailable. Log in and register to view live content