Skip to yearly menu bar Skip to main content


Poster

$\texttt{pfl-research}$: simulation framework for accelerating research in Private Federated Learning

Filip Granqvist · Congzheng Song · Áine Cahill · Rogier van Dalen · Martin Pelikan · Yi Sheng Chan · Xiaojun Feng · Natarajan Krishnaswami · Vojta Jina · Mona Chitnis

West Ballroom A-D #5310
[ ] [ Project Page ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract: Federated learning (FL) is an emerging machine learning (ML) training paradigm where clients own their data and collaborate to train a global model, without revealing any data to the server and other participants. Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce $\texttt{pfl-research}$, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly integrated with state-of-the-art privacy algorithms. We study the speed of open-source FL frameworks and show that $\texttt{pfl-research}$ is 7-72$\times$ faster than alternative open-source frameworks on common cross-device setups. Such speedup will significantly boost the productivity of the FL research community and enable testing hypotheses on realistic FL datasets that were previously too resource intensive. We release a suite of benchmarks that evaluates an algorithm's overall performance on a diverse set of realistic scenarios.

Live content is unavailable. Log in and register to view live content