Workshop
|
|
On the Inherent Privacy of Two Point Zeroth Order Projected Gradient Descent
Devansh Gupta · Meisam Razaviyayn · Vatsal Sharan
|
|
Workshop
|
|
Consensus Based Optimization Accelerates Gradient Descent
Anagha Satish · Ricardo Baptista · Franca Hoffmann
|
|
Affinity Event
|
|
Confounder-Agnostic Learning: Enhancing Robustness with Projected Gradient Descent
Sneha Chetani · Tatjana Chavdarova
|
|
Poster
|
Wed 16:30
|
Unraveling the Gradient Descent Dynamics of Transformers
Bingqing Song · Boran Han · Shuai Zhang · Jie Ding · Mingyi Hong
|
|
Poster
|
Thu 16:30
|
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang · Dongyoung Lim
|
|
Poster
|
Fri 16:30
|
Emergence of heavy tails in homogenized stochastic gradient descent
Zhezhe Jiao · Martin Keller-Ressel
|
|
Poster
|
Wed 11:00
|
Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks: Margin Improvement and Fast Optimization
Yuhang Cai · Jingfeng Wu · Song Mei · Michael Lindsey · Peter Bartlett
|
|
Poster
|
Fri 16:30
|
GLinSAT: The General Linear Satisfiability Neural Network Layer By Accelerated Gradient Descent
Hongtai Zeng · Chao Yang · Yanzhen Zhou · Cheng Yang · Qinglai Guo
|
|
Workshop
|
|
Local Curvature Descent: Squeezing More Curvature out of Standard and Polyak Gradient Descent
Peter Richtarik · Simone Maria Giancola · Dymitr Lubczyk · Robin Yadav
|
|
Workshop
|
|
Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training
Anchit Jain · Rozhin Nobahari · Aristide Baratin · Stefano Sarao Mannelli
|
|
Poster
|
Wed 11:00
|
How does Gradient Descent Learn Features --- A Local Analysis for Regularized Two-Layer Neural Networks
Mo Zhou · Rong Ge
|
|
Poster
|
Thu 11:00
|
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien · Haoyu Wang · Ziang Chen · Pan Li
|
|